Affiliation:
1. Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, ON, Canada
Abstract
A common prophylaxis against peripheral vascular diseases utilizes pneumatic active compression systems. Although effective, traditional active compression systems require the use of an air compressor and pump and are, therefore, ill-suited for ambulatory use. The current work introduces a novel approach to developing an ambulatory smart material–based active compression system. The actuation system is composed of a belt-like mechanism connected in conjunction with a multi-layered dielectric elastomer actuator. The belt mechanism allows compression to be applied directly with voltage application. By doing so, the proposed design limits the period during which the actuator should be charged and improves system power efficiency and lifetime. An analytical model which defines the pre-compression exerted by the actuation system before voltage application is presented and validated experimentally. Experimental results for the belt mechanism characterization, dielectric elastomer actuator characterization and actuation system testing are presented. Through experimental testing, it is shown that the initial pre-compression can be fine-tuned by varying the parameters of the system as defined in the analytical model, and that the pre-compression has little effect on the consequent actuation output amplitudes.
Subject
Mechanical Engineering,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献