Fatigue and Hysteresis Modeling of Ferroelectric Materials

Author:

Yoo In K.1,Desu Seshu B.1

Affiliation:

1. Department of Materials Science and Engineering College of Engineering Virginia Polytechnic Institute and State University Blacksburg, VA 24061

Abstract

Due to their nonlinear properties, ferroelectric materials are ideal candidates for smart materials. Degradation properties such as low voltage breakdown, fatigue, and aging have been major problems in commercial applications of these materials. Such degradations affect the lifetime of ferroelectric materials. Therefore, it is important to understand degradation for reliability improvement. In this article, recent studies on fatigue and hysteresis of ferroelectric ceramics such as Lead Zir conate Titanate (PZT) thin films is reviewed. A new fatigue model is discussed in detail which is based on effective one-directional movement of defects by internal field difference, defect entrapment at the ferroelectrics-electrode interface, and resultant polarization loss at the interface. A fatigue equation derived from this model is presented. Fatigue parameters such as initial polarization, piling constant, and decay constant are defined from the fatigue equation and voltage and temperature de pendence of fatigue parameters are discussed. The jump distance of defect calculated from voltage dependence of the decay constant is close to the lattice constant of ferroelectric materials, which im plies that oxygen or lead vacancies migrate either parallel or antiparallel to the polarization direc tion. From the temperature dependence of the decay constant, it is shown that the activation energy for domain wall movement plays an important role in fatigue. The hysteresis model of ferroelectrics is shown using polarization reversal. The hysteresis loop is made by four polarization stages: nucleation, growth, merging, and shrinkage of domains. The hysteresis equation confirms that dielectric viscosity controls hysteresis properties, and temperature dependence of the coefficient of dielectric viscosity is also discussed in conjunction with fatigue mechanism.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3