An inertial piezoelectric hybrid actuator with large angular velocity and high resolution

Author:

Bao Huilu1ORCID,Wen Jianming1ORCID,Chen Kang1,Ma Jijie1,Lei Dan1,Zheng Jiajia1

Affiliation:

1. Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, P.R. China

Abstract

This article proposes an inertial piezoelectric actuator with hybrid design of asymmetrically clamping structures and a bias unit for the achievement of large angular velocity and high resolution. To investigate the influence of asymmetrical clamp and bias unit on the driving performance, two types of actuators were fabricated and tested. Combined effects from asymmetrical clamp and bias unit contribute to type A, while their subtractive effect is applied to type B. Using a scanning laser vibrometer, experiments were conducted to analyze the characteristics of the angular displacement and corresponding velocity. It is indicated that the measured first-order natural frequencies for above two types are 13.828 and 14.141 Hz, which agrees well with the simulation results of 16.666 and 17.379 Hz, respectively. Besides, compared with the actuators with simple asymmetrical clamping structure or bias unit, this hybrid actuator can obtain an angular velocity 6.87 rad/s at 80 V and 16 Hz and a resolution of 2.80 μrad under a square signal of 20 V and 1 Hz and an offset distance of −22 mm. As a result, the proposed actuators can achieve large angular velocity and high resolution, which is potentially applicable to quick positioning with high accuracy.

Funder

Natural Science Foundation of Zhejiang Province

national university of defense technology

natural science foundation of zhejiang province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3