Electro-elastic analysis of functionally graded piezoelectric variable thickness cylindrical shells using a first-order electric potential theory and perturbation technique

Author:

Parhizkar Yaghoobi Mohammad1ORCID,Ghannad Mehdi1

Affiliation:

1. Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Semnan, Iran

Abstract

In this research, an analytical solution is presented for the functionally graded piezoelectric cylindrical variable wall thickness that is subjected to mechanical and electrical loading. The non-homogeneous distribution of materials is considered as a power function. The first-order electric potential theory, first-order shear deformation theory, and the energy method are used for extracting the system of governing equations. The solution is accomplished using the matched asymptotic expansion method of the perturbation technique. The effects of non-homogeneous properties on the electromechanical are discussed. Since the intensity of variations in the distribution of properties in functionally graded piezoelectric cylinders can be changed using non-homogeneity constant, the electromechanical behavior of the cylinder can be changed by non-homogeneity constant. By reducing the electric or displacement field in functionally graded piezoelectric cylinders, de-polarization or loss of piezoelectric properties may be averted. Results indicate that non-homogeneity constant has a significant effect on the electromechanical behavior. However, in some cases, the effects of non-homogeneity constant may be neglected. Comparing these results with those predicted by the plane elasticity theory and finite element method shows good agreement. In fact, the present solution can be considered as an objective function to optimize the properties and behavior.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3