Analytical solution for forced vibration of piezoelectrically actuated Timoshenko beam

Author:

Hosseini Seyedeh Marzieh1ORCID,Al-Jumaily Adel1

Affiliation:

1. School of Biomedical Engineering, University of Technology Sydney (UTS), Sydney, NSW, Australia

Abstract

Forced vibrations of a Timoshenko beam covered with a piezoelectric actuator on its top surface were investigated in this article. As the proposed beam model complied with Timoshenko beam theory, the effects of both rotary inertia and shear deformation were considered. Hamilton principle in conjunction with the Galerkin procedure were applied to derive the governing equation of motion resulting in a second-order ordinary differential equation in time. A sinusoidal electric voltage was applied to the piezoelectric actuator, and a spatially distributed harmonic mechanical force was exerted to the beam. The response of the system to the force stimulation gave an analytical relation between natural frequency and amplitude of the vibration. Using the obtained analytical relation, the effects of different factors and material properties including the modulus of elasticity of the piezoelectric layer and the piezoelectric coefficient on the vibrational response of the beam were examined. The results indicated that the piezoelectric layer as an actuator provided an effective tool for active control of vibration. Increasing the piezoelectric coefficient as well as the electric voltage applied on the piezoelectric actuator increased the amplitude of vibration, while the amplitude decreased by increasing the modulus of elasticity of the piezoelectric actuator. The results were also verified by finite element analysis.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3