Energy generated through the pyroelectric effect using Macro-fiber Composites

Author:

Acosta Krystal L1ORCID,Wilkie W Keats2,Inman Daniel J1

Affiliation:

1. Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA

2. Structural Dynamics Branch, NASA Langley Research Center, Hampton, VA, USA

Abstract

Waste energy harvesting is a method of generating small amounts of energy, usually through vibrations or thermal energy. Macro-fiber Composites (MFCs) have been employed in energy harvesting applications utilizing the piezoelectric effect, however, energy harvesting using the pyroelectric effect in MFCs has not been thoroughly explored. This paper takes strides in investigating the energy generated using the pyroelectric effect with P1 and P2 MFCs using two different oscillating temperature rates at 5°C/min and 10°C/min. Numerical temperature data along with analytical temperature functions were used to model the pyroelectric effect and the result was compared to experimental tests. Depending on the size of the MFC, type, resistor used, and the temperature rate, the energy generated varies from 0.4 to 24 µJ for the P1 MFC, and 8 to 459 µJ for the P2 MFC. The maximum specific power was also estimated analytically, numerically, and experimentally. A resistor sweep was performed using the numerical model to calculate the optimal resistance that would provide the most energy. The resistor was in the Gigaohm (GΩ) to Teraohm (TΩ) range for the specified temperature profiles. The required resistance to generate the maximum energy decreased as the temperature rate and the size of the MFC increased. This was validated with experiments conducted at varying resistances. Because this is energy generated from the ambient environment, pyroelectric harvesting can be used to power devices without cost to the source. This form of harvesting can be used in any place where there is a natural thermal cycle (i.e. due to weather or machine giving off thermal energy).

Funder

Michigan Space Grant Consortium

Langley Research Center

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Using MFC Actuators for Vibration Control of Beam and Plate Structures;Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering;2022-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3