Electromechanical study of graphene reinforced lead-free functionally graded tile for vibration energy harvesting

Author:

Adhikari Jitendra1ORCID,Kumar Rajeev1,Narain Vikas2,Jain Satish Chandra1

Affiliation:

1. School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India

2. Shri Bhawani Niketan Institute of Technology and Management, Jaipur, Rajasthan, India

Abstract

This study focuses on the electromechanical analysis of functionally graded graphene reinforced piezoelectric composite (FG-GRPC) structures in order to identify circuit metrics such as voltage and power. The graphene platelets (GPLs) scatter evenly and parallelly in each graphene platelets reinforced piezoelectric composite (GRPC) tile. The effective modulus of elasticity for the GRPC tile is calculated by the Halpin-Tsai (HT) parallel model. The rule of the mixture (ROM) is employed to estimate the effective mass density, poisson’s ratio, and piezoelectric properties of GRPC structure. A simple power law distribution is responsible for the spatial disparity in composition over the thickness to generate FG-GRPC structural tiles. The first-order shear deformation theory and Hamilton’s principle are used to derive the governing finite element equations for the FG-GRPC plates. The impact of external resistance, frequency, volume fraction, piezoelectric characteristics, and geometry of the tile on the circuit metrics of FG-GRPC structures are thoroughly examined. Our results reveal that the circuit metrics of FG-GRPC plates are significantly enhanced due to consideration of material grading exponent and a small quantity of GPLs. This article will provide the necessary physical insights for modeling the electromechanical coupling in multipurpose piezoelectric materials, devices, and large-scale systems, allowing them to be used in industrial applications such as pressure sensors, miniature ultrasonic motors, fuel injectors, active controllers, and robotic systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3