An efficient self-powered synchronous electric charge extraction interface circuit for piezoelectric energy harvesting systems

Author:

Shi Ge12,Xia Yinshui1,Ye Yidie1,Qian Libo1,Li Qing2

Affiliation:

1. Faculty of Information Science and Engineering, Ningbo University, Ningbo, P.R. China

2. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, P.R. China

Abstract

Harvesting ambient vibration energy using piezoelectric elements is a popular energy harvesting technique. Energy harvesting efficiency is the research focus. Using synchronous electric charge extraction technology in piezoelectric energy harvesting systems can greatly improve the energy harvesting efficiency. This article presents a self-powered efficient synchronous electric charge extraction circuit for piezoelectric energy harvesting systems, in which four self-powered switch circuits are used to optimize the time sequence of charge extraction so that the rectifier bridge circuit used in traditional synchronous electric charge extraction can be saved. The effect of phase lag on extraction efficiency, system energy, and loss of overall circuit is analyzed. A piezoelectric vibration experimental platform is built for testing the power generation performance of the self-powered efficient synchronous electric charge extraction and those published energy harvesting circuits. The experimental results accord with the theoretical analysis. Moreover, the harvesting energy of the proposed self-powered efficient synchronous electric charge extraction is about three times more than those of the standard energy harvesting circuit under its maximum power point and the self-powered synchronized switch harvesting on inductor in most cases. The energy harvesting efficiency of self-powered efficient synchronous electric charge extraction remains at a high level (>80%) in most cases, and the maximum energy harvesting efficiency is up to 85.1%.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3