Optimal placement and active vibration control for piezoelectric smart flexible manipulators using modal H2 norm

Author:

Lu En1ORCID,Li Wei1,Yang Xuefeng1,Wang Yuqiao1,Liu Yufei12

Affiliation:

1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China

2. School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu, China

Abstract

The optimal placement and active vibration control for piezoelectric smart single flexible manipulator are investigated in this study. Based on the assumed mode method and Hamilton’s principle, the dynamic equation of the piezoelectric smart single flexible manipulator is established. Then, the singular perturbation method is adopted and the coupled dynamic equation is decomposed into slow (rigid) and fast (flexible) subsystems. After that, the couple optimal placement criterion of piezoelectric actuators is proposed on the base of modal H2 norm of the fast subsystem and the change rate of natural frequencies. Using an improved particle swarm optimization algorithm, the optimal placement of piezoelectric actuators is realized. Subsequently, in order to verify the validity and feasibility of the presented optimal placement criterion, the composite controller is designed for the active vibration control of the piezoelectric smart single flexible manipulator. Finally, numerical simulations and experiments are presented. The results demonstrate that the piezoelectric smart single flexible manipulator system has a better single modal controllability and observability and has a good result on the vibration suppression using the optimization results of actuators. The proposed optimal placement criterion and method are feasible and effective.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3