Comparison of Control Laws for Vibration Suppression Based on Energy Consumption

Author:

Ya Wang 1,Inman Daniel J.2

Affiliation:

1. Center for Intelligent Material Systems and Structures, Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA,

2. Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109-2140, USA

Abstract

The research study presented here examines four conventional vibration suppression control laws and four hybrid modifications of these laws using a switching method. The motivation is to determine which of these eight controllers results in the least amount of power flow to the actuator to have the same settling time under free vibrations. The reason to look at reduced energy controllers is the idea that in some applications, very little energy is available for control, yet passive and semi-active methods cannot meet performance demands. In particular, the eventual goal is to reduce transient vibrations of smart structures using energy obtained from harvesting and/or low-power storage devices (batteries or super capacitors), as often desirable in aerospace systems. The four conventional active control systems compared in this study are Positive Position Feedback (PPF) control, Proportional Integral Derivative (PID) control, non-linear control, and Linear Quadratic Regulator (LQR) controls. A hybrid version of each controller is obtained by implementing a bang-bang control law (on-off control). The bang-bang control algorithm switches the control voltage between an external voltage supply and the feedback signal provided by the PPF, PID, non-linear, or LQR controllers. The purpose of combining the bang-bang control law with the aforementioned controllers is to reduce the power requirement for vibration suppression by providing an active controller with limited voltage input. Free vibrations of a thin cantilevered beam with a piezoceramic transducer are controlled by these eight controllers with a focus on the fundamental transverse vibration mode. Experimental results exhibit that the system with hybrid bang-bang-non-linear controller requires 67.3% less power than its conventional version. The hybrid versions require significantly less power flow compared to their conventional counterparts for the PPF, PID, and LQR controllers as well. Experiments also reveal the presence of substantial piezoelectric non-linearities in the transducer. The voltage-dependent behavior of the electromechanical coupling coefficient is identified empirically and represented by a curve-fit expression. A real-time adaptive control algorithm is developed to account for the voltage-dependent behavior of the coupling coefficient, enabling good agreement between the simulation and experimental results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3