Multi-objective geometry optimization of the Fish Bone Active Camber morphing airfoil

Author:

Woods Benjamin KS1,Friswell Michael I1

Affiliation:

1. College of Engineering, Swansea University, Singleton Park Campus, Swansea, UK

Abstract

This work presents the development of a design optimization code for the geometry of the Fish Bone Active Camber morphing airfoil concept, which has been under development at Swansea University. This concept employs a biologically inspired architecture to provide highly anisotropic structural compliance, which creates smooth and continuous camber changes of large magnitude. Previous work has shown that this concept is capable of large lift coefficient control authority and significant reductions in drag over traditional trailing edge flaps. Further development of the concept requires a more robust design methodology that allows for an automated and thorough search of the available design space in order to optimize the aero-structural and system-level performance of the concept. To this end, this research extends a previously developed fluid–structure interaction analysis into a useful design tool by embedding it within a multi-objective structural optimization routine based on a genetic algorithm. The three objective functions of aerodynamic drag, added mass, and actuation energy are minimized concurrently. Example results from a specific operating condition are shown. Examination of the Pareto frontiers and the objective values of the population at large give insight into the structural behavior of the morphing concept. The objectives of mass and energy are found to be strongly competing, but good compromise points exist. The drag objective is found to be less sensitive than the others, with low drag being achievable across a range of designs with both low mass and low energy requirements, although the Pareto frontiers formed are not as well populated with regard to drag.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3