Experimentation and simulation study of electromechanical response characteristics of a 2-2 type cement-based piezoelectric composite sensor

Author:

Dong Haiwei123ORCID,Ma Bohan4,Zhu Ziye123,Li Zhe123,Yang Xiaokun123,Chen Jiangying123

Affiliation:

1. Key Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, Ningbo, China

2. Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessel and Pipeline, Ningbo University, Ningbo, China

3. Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, China

4. Engineering Research Center of Industrial Construction in Civil Engineering of Zhejiang Province, Ningbo University of Technology, Ningbo, China

Abstract

In the manuscript, the piezoelectric functional element was prepared by slicing and adding method using piezoelectric ceramic PZT-5H and ordinary silicate cement 42.5 was as base materials, and then a 2-2 type cement-based piezoelectric composite sensor was prepared by an encapsulated epoxy resin. The experimental and simulation analysis was carried out to obtain the quasi-static linear sensitivity of the electromechanical response of the sample under conditions of compressive loading. The development process of the sample from local failure to overall fragmentation was observed using a high-speed camera. Found that the electrical nonlinear threshold of 35 MPa appeared before the mechanical nonlinear threshold. Further, the results showed that when the loading frequency was increased from 5 to 15 Hz under equal amplitude, the response waveform remained unchanged, however, the electrical displacement was attenuated by 19.7%. Packaging schemes using various lengths and thicknesses of an epoxy layer were conducted by using simulation. It is indicated that, under the premise of ensuring the protection package and considering the manufacturing process, the length of the package side could increase appropriately, and the single-side package side length is set to 4 mm. When the thickness of the package layer becomes less, it would be better.

Funder

Science and Technology Innovation 2025 Major Project of Ningbo

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3