Affiliation:
1. Chemical Engineering Department, University of Sevilla, Sevilla, Spain
2. Departamento de Ciência dos Materiais and CENIMAT/I3N, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
Abstract
Electrorheological fluids have been paying a lot of attention due to their potential use in active control of various devices in mechanics, biomedicine or robotics. An electrorheological fluid consisting of polarizable particles dispersed in a non-conducting liquid is considered to be one of the most interesting and important smart fluids. This work presents the effect of the dopant, camphorsulphonic acid or citric acid, on the electrorheological behaviour of suspensions of doped polyaniline nanostructures dispersed in silicone oil, revealing its key role. The influence of carbon nanoparticle concentration has also been studied for these dispersions. All the samples showed an electrorheological effect, which increased with electric field and nanostructure concentration and decreased with silicone oil viscosity. However, the magnitude of this effect was strongly influenced not only by carbon nanoparticle concentration but also by the dopant material. The electrorheological effect was much lower with a higher carbon nanoparticle concentration and doped with citric acid. The latter is probably due to the different acidities of the dopants that lead to a different conductivity of polyaniline nanostructures. Furthermore, the effect of the carbon nanoparticles could be related to its charge trapping mechanism, while the charge transfer through the polymeric backbone occurs by hopping. Polyaniline/camphorsulphonic acid composite nanostructures dispersed in silicone oil exhibited the highest electrorheological activity, higher than three decades increase in apparent viscosity for low shear rates and high electric fields, showing their potential application as electrorheological smart materials.
Funder
V Plan Propio Universidad de Sevilla
COMPETE 2020
FCT - Portuguese Foundation for Science and Technology
Subject
Mechanical Engineering,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献