Development and performance evaluation of a wheel-type cantilevered piezoelectric rotational energy harvester via an unfixed exciting magnet

Author:

Kan Junwu12,Zhang Li1ORCID,Wang Shuyun12,Kan Xinyue3,Gu Yiqun1,Yang Zemeng4,Zhang Zhonghua12

Affiliation:

1. Institute of Precision Machinery and Smart Structure, Zhejiang Normal University, Jinhua, P. R. China

2. Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology and Equipment of Zhejiang Province, Zhejiang Normal University, Jinhua, P. R. China

3. Department of Electrical and Computer Engineering, University of California-Riverside, Riverside, CA, USA

4. School of Electrical Engineering, Yanshan University, Qinhuangdao City, Hebei Province, China

Abstract

A wheel-type cantilevered piezoelectric rotational energy harvester (wheel-type PREH) via an unfixed exciting magnet was presented to harvest energy from rotational motion without or far away from a fixed support. To verify the structural feasibility and figure out the effect of rolling exciting magnet and excited magnet on the dynamic characteristics and power generation performance of the wheel-type PREH, the theoretical analysis, simulation, fabrication and experimental testing were performed. The results showed that the performance of the wheel-type PREH depended on the rotary speeds, proof mass and piezo-cantilever mass, number of exciting magnets, cylindrical sleeve materials and so on. When other parameters were constant, there were multiple optimal rotary speeds for the maximal amplitude-ratio, output voltage, electrical energy and output power to achieve peak. Besides, the total number of voltage crests per second did not change with rotary speed. There was a constant optimal resistance load for the wheel-type PREH at different rotary speeds to achieve maximal power. The PREH prototype could yield a maximum output power of 0.74 mW at 767 r/min with optimal load resistance of 215 kΩ and 40 different color LEDs in parallel and a low power light strip could be lighted by wheel-type PREH.

Funder

Zhejiang Provincial Key Research and Development Project of China

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3