Bayesian inference and uncertainty propagation using efficient fractional-order viscoelastic models for dielectric elastomers

Author:

Miles Paul R1ORCID,Pash Graham T12,Smith Ralph C2ORCID,Oates William S3

Affiliation:

1. Department of Mathematics, North Carolina State University, Raleigh, NC, USA

2. Department of Mechanical Engineering, North Carolina State University Raleigh, NC, USA

3. Department of Mechanical Engineering, Florida A&M University and Florida State University, Tallahassee, FL, USA

Abstract

Dielectric elastomers are employed for a wide variety of adaptive structures. Many of these soft elastomers exhibit significant rate-dependencies in their response. Accurately quantifying this viscoelastic behavior is non-trivial and in many cases a nonlinear modeling framework is required. Fractional-order operators have been applied to modeling viscoelastic behavior for many years, and recent research has shown fractional-order methods to be effective for nonlinear frameworks. This implementation can become computationally expensive to achieve an accurate approximation of the fractional-order derivative. Accurate estimation of the elastomer’s viscoelastic behavior to quantify parameter uncertainty motivates the use of Markov Chain Monte Carlo (MCMC) methods. Since MCMC is a sampling based method, requiring many model evaluations, efficient estimation of the fractional derivative operator is crucial. In this paper, we demonstrate the effectiveness of using quadrature techniques to approximate the Riemann–Liouville definition for fractional derivatives in the context of estimating the uncertainty of a nonlinear viscoelastic model. We also demonstrate the use of parameter subset selection techniques to isolate parameters that are identifiable in the sense that they are uniquely determined by measured data. For those identifiable parameters, we employ Bayesian inference to compute posterior distributions for parameters. Finally, we propagate parameter uncertainties through the models to compute prediction intervals for quantities of interest.

Funder

National Science Foundation

Air Force Office of Scientific Research

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncertain Quasi-static and Nonlinear Dynamic Analysis of Viscoelastic Dielectric Elastomer with Interval Parameters;International Journal of Computational Methods;2022-06-13

2. Finite deformation and fractional order viscoelasticity of an auxetic foam;Journal of Intelligent Material Systems and Structures;2022-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3