Multi-objective optimization design for a magnetorheological damper

Author:

Jiang Min1,Rui Xiaoting1ORCID,Yang Fufeng1,Zhu Wei1,Zhang Yanni1

Affiliation:

1. Institute of Launch Dynamics, Nanjing University of Science and Technology, Nanjing, P. R. China

Abstract

As one of the most important components in the semi-active damping system, the performance of MR damper directly determines the damping capacity of the damping system. In order to make the damping system has excellent damping effect, it is necessary to optimize the working performance of the MR damper. Therefore, Non-Dominated Sorting Genetic Algorithm version II (NSGA-II) was applied to optimize the structure of MR dampers in this paper. Firstly, the structural scheme of MR damper was proposed. Secondly, the design principle of MR damper was described, and the magnetic circuit material and MR fluid were selected. Thirdly, taking the maximum dynamic range and the minimum number of turns of electromagnetic coil as the optimization objective, the structure of MR damper was optimized by NSGA-II. The structural parameters of MR damper were determined in the Pareto optimal solution set based on the principle of minimum mass. Finally, through the magnetic simulation and the performance testing of the MR damper, it was verified that the MR damper has reasonable magnetic circuit and excellent performance. And the design results meet the requirements. The proposed optimization method can provide a theoretical basis for the optimal design of related damping devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3