Analysis of longitudinal and torsional resonance vibrations of a piezoelectrically excited bar by introducing piezoelectric loss coefficients

Author:

Bai Yang12,Tuncdemir Safakcan2,Guo Jifeng1,Uchino Kenji23

Affiliation:

1. Zhejiang University, Hangzhou, China

2. The Pennsylvania State University, University Park, PA, USA

3. Office of Naval Research Global – Asia, Tokyo, Japan

Abstract

In this study, a method to develop a resonance vibration model of a piezo-bar with slanted ceramics is presented by considering piezoelectric loss coefficients. The vibration model reported here predicts natural frequencies and mode shapes for longitudinal and torsional modes. Analytical results for the longitudinal and torsional vibration displacements were formulated as a function of material and geometric properties. Parametrical analysis of the resonance vibration modes and the explicit solution of the vibration displacement provide a tool for improving the design and developing control schemes for devices such as ultrasonic motors that utilize this structure. Model calculations were compared with ATILA™ finite element analysis simulations and good agreements were found. The model and the formulas to find the resonance frequencies and to calculate the vibration displacement were verified for different design parameters. Although the model was developed for a slanted ceramic stator of a multimode ultrasonic motor, the method to develop the model can be utilized for other single-degree-of-freedom piezoelectric ceramic applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3