Influence of biomechanical compliance on control performance of a magnetorheological sliding seat system

Author:

Mao Min1,Choi Young T1,Wereley Norman M1ORCID,Browne Alan L2,Johnson Nancy L2

Affiliation:

1. Department of Aerospace Engineering, University of Maryland, College Park, MD, USA

2. General Motors Research and Development Center, Warren, MI, USA

Abstract

We investigate the feasibility of a sliding seat with a magnetorheological (MR) energy absorber (MREA) to minimize loads transmitted to a payload in a ground vehicle for frontal impact speeds ranging as high as 7 m/s (15.7 mph). The crash pulse for a given impact speed was assumed to be a rectangular deceleration pulse having a prescribed magnitude and duration. The control objective is to bring the seat system to rest using the available stroke, while accommodating changes in impact velocity and occupant mass ranging from a 5th percentile female to a 95th percentile male. The seat system was first treated as a single-degree-of-freedom (SDOF) rigid occupant (RO) model, and two control algorithms are developed: (1) constant Bingham number control and (2) constant force control. To explore the effects of occupant compliance on the adaptive seat system performance, a multi-degree-of-freedom (MDOF) compliant occupant (CO) model was integrated with the seat mass and the same control algorithms were used. Simulation results showed that the designed adaptive controllers successfully controlled load-stroke profiles to bring the seat system to rest in the available stroke and reduced occupant decelerations. Analysis showed extensive coupling between the seat structures and occupant biodynamic response.

Funder

General Motors Corporation

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3