More accurate less meaningful? Why quality indicators do not unveil the socio-technical practices inscribed into land use maps

Author:

Braun Andreas Christian1ORCID

Affiliation:

1. Kassel Institute for Sustainability, University of Kassel, Germany

Abstract

Remote sensing plays an important role for modern geography and environmental science. At the same time, it often stands on a weak epistemological foundation. Remote sensing results are mostly treated as strictly objective, context-independent artifacts. This vastly ignores the human practices that led to these results. Thus, remote sensing data are uncritically incorporated into (environmental) policy decision-making processes without understanding exactly how they were generated. Recent research has been critical of this. In a previous study, I showed that the accuracy of land use results can be increased by class aggregation, while the geographic or environmental meaning of the results suffers. I called this provocatively the “more accurate, less meaningful (MALM)” effect and showed that it exists regardless of the technical level of classification. In this study, I discuss the extent to which MALM can be remedied by choosing an appropriate quality indicator. I show that, to the largest extent conceivable, the quality indicator does not and cannot unveil the effects of socio-technical practices, which are materially inscribed into land use maps. Hence, quality indicators are unable to objectivize the effects of practices and values by the researchers. Consequently, they do not solve the MALM problem. On the contrary, I show that the explicit inclusion of geographic knowledge in quality addresses the MALM effect to the largest extent possible. This reinforces my claim that more attention needs to be paid to considering the values and practices behind remote sensing information. I discuss the results in a broad context and argue that and why critical remote sensing based on critical (physical) geography and science-and-technology studies is vital to better incorporate such results into policymaking.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3