Variability of throughfall volume and solute inputs in wooded ecosystems

Author:

Levia Delphis F.1,Frost Ethan E.2

Affiliation:

1. Department of Geography and Center for Climatic Research, University of Delaware, Newark, DE 19716-2541, USA;

2. Department of Geography, University of Delaware, Newark, DE 19716-2541, USA

Abstract

Throughfall is a critical component of the hydrological and biogeochemical cycles of wooded ecosystems with a characteristically large degree of temporal and spatial variability. The highly variable nature of throughfall is of importance to scientists and natural resource managers concerned with the effects of water and solute inputs to the subcanopy, including understory vegetation, soil moisture, soil solution chemistry, and the fate of atmospheric dryfall. The purpose of this study is to critically review and evaluate the present state of knowledge pertaining to the temporal and spatial variability of throughfall volume and solute inputs in wooded ecosystems. The authors are optimistic that this review will facilitate the advancement of science by exposing gaps in our current understanding and mitigating the duplication of unwarranted research efforts. Several key areas where current knowledge is weak are: (1) the effect of meteorological conditions on the variability of throughfall volume; a data gap exists concerning the effects of precipitation type (eg, rain, snow, snow-to-rain, rain-to-snow), incident rain drop size, intensity, duration, wind speed and direction, and wind run on the throughfall variability; (2) the effect of meteorological conditions on the variability of throughfall solute inputs; (3) the role of canopy structure on precipitation partitioning into throughfall and stemflow and the variability of throughfall volume and solute inputs; (4) effects of epiphytes on the spatial variation of throughfall volume and solute inputs; (5) the physics and fluid dynamics of water flow over vegetative surfaces and its impact on throughfall yield and chemical enrichment; and (6) intraspecific variation of throughfall water and solute inputs. Future research projects undertaken with the specific aim of addressing the deficiencies identified will improve our understanding of interactions among the biosphere-atmosphere-lithosphere and promote better stewardship of forest and water resources.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Cited by 229 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3