Beyond the Bioclimatic Law

Author:

Liang Liang1

Affiliation:

1. University of Kentucky, USA

Abstract

Almost a century ago, observed geographic patterns of plant phenology (such as leaf-out and flowering) were summarized in Hopkins’ Bioclimatic Law. This law describes phenology as varying along climatic gradients by latitude, longitude, and altitude. Yet phenological patterns are not only affected by contemporary climatic differences across space, but also by underlying geographic variations in plant genetics that arise from long-term climatic adaptation. The latter influence on geographic patterns in phenology has been undervalued to this day, mainly due to the difficulty of quantifying it. This study outlines a methodology for bridging this knowledge gap through delineating geographic adaption patterns using common garden and cloned plant phenology. Through synthesizing existing literature, typical geographic adaptation patterns in both spring and autumn phenology of many temperate tree species are identified. Under uniform environment, spring leaf-out of colder climate-adapted populations of a certain species is either earlier than warmer climate-adapted ones due to lower thermal requirements, or later because of higher chilling (for dormancy release) demands. The former leads to a countergradient pattern as it is opposite to an in situ observation, while the latter leads to a cogradient pattern. Autumn leaf senescence, on the other hand, expresses a consistent cogradient pattern that is related to latitude and constrained by the populations’ varied photoperiod requirements. These geographic adaptation patterns allow a clearer understanding of geographical variations in phenological responses to climate change, and provide a theoretical basis for spatially explicit phenological models. In addition, given that these adaptive patterns reveal genotype-based variabilities, they are potentially useful for more accurately tracking phenology-dependent ecosystem processes (e.g. species distribution) and non-weather-related vegetation changes. As a unique subfield of physical geography with broad environmental implications, this line of research needs to be further developed by furnishing a stronger and more explicit spatial structure into current phenological studies.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3