High-resolution climate change during the Marine Isotope Stage 3 revealed by Zhouqu loess in the eastern margin of the Tibetan Plateau

Author:

Chen Zixuan1ORCID,Li Qiong2,Li Pushuang2,Zhou Jiantao2,Su Yating2,Liu Weiming3,Luo Yuanlong2,Wen Chen2,Xu Xuechao2,Yang Shengli2

Affiliation:

1. Key Laboratory of Western China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China; School of Geography and Tourism, Jiaying University, Meizhou, China

2. Key Laboratory of Western China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

3. CAS Key Laboratory of Mountain Hazards and Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China

Abstract

A consensus has not yet been reached on effects of climate change and driving mechanisms between the Tibetan Plateau (TP) and adjacent monsoonal areas during the Marine Isotope Stage 3 (MIS 3). Loess–paleosol sequences from the TP provide valuable information about the MIS 3 environmental history. Detailed color index and a diffuse reflectance spectral (DRS) analysis of Zhouqu (ZQ) loess from the Western Qinling Mountains were conducted to investigate climate change on the eastern margin of the TP during the MIS 3. Our results show that the variations in color index and iron oxide content in ZQ loess are mainly caused by the pedogenesis and climate conditions. The lightness (L*) value and hematite (Hm) content were used to reconstruct the precipitation history and temperature changes, respectively. The reconstructed records revealed that climate change during the MIS 3 was characterized by high frequency and large amplitude, with millennial-scale changes superimposed on orbital-scale changes. Warm–humid climate occurred in the late MIS 3, while the early climate of MIS 3 was relatively cold–dry. The Indian summer monsoon (ISM) and temperature variations during the MIS 3 mainly occurred due to obliquity and precession. The North Atlantic cooling led to the southward movement of the Intertropical Convergence Zone, and the downstream cooling of the atmosphere by the westerly jet could result in events on a millennial-scale in the eastern margin of the TP. The interhemispheric forcing may play an important role in driving the strong summer monsoon in the late MIS 3.

Funder

The Second Tibetan Plateau Scientific Expedition and Research Program

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3