Approaches to the study of hillslope development due to mass movement

Author:

Brooks S.M.1,Richards K.S.1,Anderson M.G.1

Affiliation:

1. Department of Geography, University Road, Bristol BS8 1SS, Department of Geography, Downing Place, Cambridge CB2 3EN, Department of Geography, University Road, Bristol BS8 1SS

Abstract

Slope-angle histograms have traditionally provided a data base for the evaluation of changing angles over geological time. Ideas relating to hillslope development due to mass movement have considered a lowering in regolith shear resistance due to weathering, producing slope-angle decline. Decreasing values for angles of internal friction, along with increasing pore water pressures, have been suggested to explain slope-angle decline through time. These ideas have considered simple changes in undifferentiated regolith. This article considers the role of progressive pedogenesis in determining the changing stability of slopes. For this it is necessary to evaluate the changes which occur within individual horizons to produce an increasingly differentiated soil cover. Angles of internal friction alter at different rates and in different ways depending on whether the horizon is losing or gaining weathered material through translocation. Furthermore, the increasing internal differentiation of the soil cover has complex effects on its hydrological response. Instead of the two scenarios previously envisaged, one involving the water table below the slip surface and the other involving the water table at the ground surface, slope stability needs to be evaluated in the light of continually changing negative or positive pore water pressures. Each storm produces a different response, and this response alters with soil development, complicating the assessment of failure timing and depth. The study of evolving soil profiles is of fundamental significance to a range of geomorphological processes, requiring closer evaluation in the future.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3