Risk assessment of simultaneous debris flows in mountain townships

Author:

Cui Peng1,Zou Qiang2,Xiang Ling-zhi3,Zeng Chao4

Affiliation:

1. CAS Key Lab. of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, China

2. CAS Key Lab. of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China; and Southwest University of Science and Technology, China

3. Chongqing Jiaotong University, China

4. CAS Key Lab. of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, China; and University of Chinese Academy of Sciences, China

Abstract

Many mountain towns in China are located on the joint alluvial fans of multiple and adjacent past debris flows, making them vulnerable to large, multiple, and simultaneous debris flows during heavy rainfall. Without emergency management planning, such flows, often appearing with interconnecting and chain-reaction processes, can lead to extensive loss of life and property. In the Wenchuan earthquake-affected area, such disasters are common. We analyzed the compound effects of simultaneous debris flow events, and proposed three quantitative methods of debris risk assessment based on kinetic energy, flow depth, and inundation depth. Validated using a field study of actual debris flow disasters, these analyses are useful in determining the type, quantity, distribution, economic worth, and susceptibility of hazard-affected objects in a region. Subsequently, we established a method to determine the vulnerability of different hazard-affected objects, particularly concerning the susceptibility indexes of buildings or structures. By analyzing the elements underlying hazard formation conditions, damage potential, and the socio-economic conditions of mountain townships, we proposed a systematic and quantitative method for risk analysis of mountain townships. Finally, the proposed method was applied to a case study of Qingping Township, which was affected by 21 simultaneous debris flows triggered by a 50-year return period precipitation event. The proposed method analyzed the superposition and chain-reaction effects of disasters and divided the affected area of the township into three risk zones. The analysis indicated that the calculated risk zones coincide with the actual distribution and severity of damage in the debris flow event, which suggests that the risk assessment is consistent with results from the actual disaster.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3