Critical Zone Science in the Anthropocene: Opportunities for biogeographic and ecological theory and praxis to drive earth science integration

Author:

Minor Jesse1ORCID,Pearl Jessie K2,Barnes Mallory L3,Colella Tony R2,Murphy Patrick C2ORCID,Mann Sarina2,Barron-Gafford Greg A2

Affiliation:

1. University of Maine at Farmington, Farmington, ME, USA

2. University of Arizona, Tucson, AZ, USA

3. Indiana University Bloomington, Bloomington, IN, USA

Abstract

Critical Zone Science (CZS) represents a powerful confluence of research agendas, tools, and techniques for examining the complex interactions between biotic and abiotic factors located at the interface of the Earth’s surface and shallow subsurface. Earth’s Critical Zone houses and sustains terrestrial life, and its interacting subsystems drive macroecological patterns and processes at a variety of spatial scales. Despite the analytical power of CZS to understand and characterize complicated rate-dependent processes, CZS has done less to capture the effects of disturbance and anthropogenic influences on Critical Zone processes, although some Critical Zone Observatories focus on disturbance and regeneration. Methodological approaches from biogeography and ecology show promise for providing Critical Zone researchers with tools for incorporating the effects of ecological and anthropogenic disturbance into fine-grained studies of important Earth processes. Similarly, mechanistic insights from CZS can inform biogeographical and ecological interpretations of pattern and process that operate over extensive spatial and temporal scales. In this paper, we illustrate the potential for productive nexus opportunities between CZS, biogeography, and ecology through use of an integrated model of energy and mass flow through various subsystems of the Earth’s Critical Zone. As human-induced effects on biotic and abiotic components of global ecosystems accelerate in the Anthropocene, we argue that the long temporal and broad spatial scales traditionally studied in biogeography can be constructively combined with the quantifiable processes of energy and mass transfer through the Critical Zone to answer pressing questions about future trajectories of land cover change, post-disturbance recovery, climate change impacts, and urban hydrology and ecology.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3