Tree-ring hydrological research in the Himalaya: State of the art and future directions

Author:

Islam Nazimul12ORCID,Vennemann Torsten1,Büntgen Ulf234,Cherubini Paolo56,Lane Stuart N1

Affiliation:

1. Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Lausanne, Switzerland

2. Department of Geography, University of Cambridge, Cambridge, UK

3. Global Change Research Institute CzechGlobe, Czech Academy of Sciences, Brno, Czech Republic

4. Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic

5. Swiss Federal Research Institute WSL, Birmensdorf, Switzerland

6. Faculty of Forestry, University of British Columbia, Vancouver, Canada

Abstract

Recent developments in tree-ring research offer great potential for reconstructing past climate changes; determining the frequencies of natural hazards; and assessing the availability of freshwater resources over timescales that extend well into the pre-instrumental period. Here, we review the state of dendrochronological research in the Himalaya and outline future directions for tree-ring-based hydrological reconstructions in a region that has a pressing societal need to understand the causes and consequences of past, present and future changes in the hydrological cycle. We used ‘tree ring’ and ‘Himalaya’ as keywords to identify scholarly articles from the Web of Science that were published between 1994 and 2022. The resulting 173 publications were separated by their spatial coverage into the western, central and eastern Himalaya, as well as their scientific purpose (e.g. reconstructing growth-climate relationships, temperature, precipitation, streamflow, floods, droughts, etc.). Our analysis shows that dendrochronological research in the Himalaya primarily focused on understanding growth-climate relationships using annual tree-ring widths measurements obtained for coniferous species, and their application in climate reconstructions. Reconstructions of hydrological processes such as streamflows, and extremes such as glacial and landslide lake outburst floods, have received less attention. Recent advances in dendrochronology, including blue intensity (BI), quantitative wood anatomy (QWA), and tree-ring stable isotopes (TRSI) should be combined to improve the resolution and accuracy of hydrological reconstructions in all parts of the Himalaya. Such studies may allow us to better understand the effects of climate change and the Himalayan water resources for its lowland surroundings. They may also facilitate decision-making processes for mitigating the impacts of climate change on natural hazards, and for better managing water resources in the region.

Funder

University of Lausanne

Federal Commission for Scholarships for Foreign Students

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3