Supporting large-area, sample-based forest inventories with very high spatial resolution satellite imagery

Author:

Falkowski Michael J.1,Wulder Michael A.2,White Joanne C.3,Gillis Mark D.3

Affiliation:

1. School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA

2. Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada,

3. Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada

Abstract

Information needs associated with forest management and reporting requires data with a steadily increasing level of detail and temporal frequency. Remote sensing satellites commonly used for forest monitoring (eg, Landsat, SPOT) typically collect imagery with sufficient temporal frequency, but lack the requisite spatial and categorical detail for some forest inventory information needs. Aerial photography remains a principal data source for forest inventory; however, information extraction is primarily accomplished through manual processes. The spatial, categorical, and temporal information requirements of large-area forest inventories can be met through sample-based data collection. Opportunities exist for very high spatial resolution (VHSR; ie, <1 m) remotely sensed imagery to augment traditional data sources for large-area, sample-based forest inventories, especially for inventory update. In this paper, we synthesize the state-of-the-art in the use of VHSR remotely sensed imagery for forest inventory and monitoring. Based upon this review, we develop a framework for updating a sample-based, large-area forest inventory that incorporates VHSR imagery. Using the information needs of the Canadian National Forest Inventory (NFI) for context, we demonstrate the potential capabilities of VHSR imagery in four phases of the forest inventory update process: stand delineation, automated attribution, manual interpretation, and indirect attribute modelling. Although designed to support the information needs of the Canadian NFI, the framework presented herein could be adapted to support other sample-based, large-area forest monitoring initiatives.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3