An excess-work approach to assessing channel instability potential within urban streams of Chicago, Illinois: Relative importance of spatial variability in hydraulic conditions and stormwater mitigation

Author:

Meem Tasneem Haq1ORCID,Rhoads Bruce L1,Fouts Leo2,Schmidt Arthur2,Byard Gregory3ORCID

Affiliation:

1. Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA

2. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA

3. Illinois State Water Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA

Abstract

Stormwater management in urban environments typically involves regulation of release rates of stored water from control structures to mitigate enhanced peak flows that can cause damaging flooding. The extent to which this mitigation influences stream geomorphic stability remains largely unexplored. Moreover, few, if any, studies have examined how instability is related to hydraulic effects of in-channel structures within urban stream systems. This paper assesses the potential for channel instability under existing conditions in two urban streams in Cook County, Illinois using a stream-power modeling approach. It also evaluates the impact of watershed-specific release rates intended to mitigate flooding from future development on instability potential. The analysis utilizes hydrologic and hydraulic modeling to estimate stream power per unit area for 2-year and 50-year storm events for both the existing base condition and for four release-rate scenarios. Stream power exceeding the critical power required to mobilize channel bed material is integrated over time to determine excess work. Results show that the spatial distribution of excess work for the base condition varies by more than nine orders of magnitude within individual reaches, confirming high potential for instability. Release-rate scenarios both increase and decrease the magnitude of excess work relative to the base conditions within specific reaches of the two streams but do not alter substantially the high variability in excess work. The results demonstrate that instability potential in these urban fluvial systems is governed primarily by spatial variability in hydraulic properties associated with fragmentation of the streams by multiple in-channel structures.

Funder

Chicago Metropolitan Water Reclamation District

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3