Hypertemporal analysis of remotely sensed sea-ice data for climate change studies

Author:

Piwowar Joseph M.1,LeDrew Ellsworth F.1

Affiliation:

1. Department of Geography, University of Waterloo, Canada

Abstract

Climatologists have speculated that a spatially coherent pattern of high-latitude temperature trends could be an early indicator of climatic change. The sensitivity of sea ice to the temperature of the overlying air suggests the possibility that trends in Arctic ice conditions may be useful proxy indicators of general climatic changes. Aspects of the north-polar ice pack which have been identified as key parameters to be monitored include ice extent, concentration, type, thickness and motion dynamics. In spite of the considerable interannual, regional and seasonal variations exhibited by these data, there may be some evidence of an emerging trend towards decreasing ice extent and concentration. Collecting data in such a remote and harsh environment to support these analyses is only possible through satellite remote sensing. Remote sensing in the microwave portion of the electromagnetic spectrum is particularly relevant for polar applications because microwaves are capable of penetrating the atmosphere under virtually all conditions and are not dependent on the sun as a source of illumination. In particular, analyses of passive microwave imagery can provide us with daily information on sea-ice extent, type, concentration, dynamics and melt onset. A historical record of Arctic imagery from orbiting passive microwave sensors starting from 1973 provides us with an excellent data source for climate change studies. The development of analysis tools to support large area monitoring is integral to advancing global change research. The critical need is to create techniques which highlight the space-time relationships in the data rather than simply displaying voluminous quantities of data. In particular, hypertemporal image analysis techniques are required to help find anticipated trends and to discover unexpected or anomalous temporal relationships. Direct hypertemporal classification, principal components analysis and spatial time-series analysis are identified as three primary techniques for enhancing change in temporal image sequences. There is still a need for the development of new tools for spatial- temporal modelling.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Reference116 articles.

1. Adamowski, K., Mohamed, F.B., Dalezios, N.R. and Birta, L.G. 1985: Space-time ARIMA modelling of precipitation time series. In Shen, H.W., editor, Multivariate analysis of hydrologic processes. Fort Collins, CO: Engineering Research Center, Colorado State University , 217-27.

2. Satellite passive microwave studies of the Sea of Okhotsk ice cover and its relation to oceanic processes, 1978–1982

3. The onset of spring melt in first-year ice regions of the Arctic as determined from scanning multichannel microwave radiometer data for 1979 and 1980

4. Seasonal and diurnal variations in SAR signatures of landfast sea ice

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3