A new approach for dealing with depressions in digital elevation models when calculating flow accumulation values

Author:

Arnold Neil1

Affiliation:

1. Scott Polar Research Institute, UK,

Abstract

Calculation of flow accumulation (also known as upstream area) matrices from digital elevation models (DEMs) is a very common procedure in hydrological studies, and also has been used in other disciplines within physical geography, such as glaciology. A problem with such calculations has always been the presence of closed depressions in DEMs; flow is directed towards such areas, but then cannot ‘escape’. In many implementations of flow accumulation algorithms such depressions have been removed from the DEM with some form of pre-processing algorithm which typically transform depressions into flat areas, across which area can then be routed. This approach effectively assumes that all depressions in a DEM are therefore artifacts, and not true features within the landscape. The proliferation of very high quality, high precision, and fine spatial resolution DEMs in recent years means that such an assumption is increasingly difficult to support. In this paper, some of the main flow accumulation algorithms and some existing techniques for dealing with closed depressions in DEMs are reviewed. A new algorithm is presented which assumes that such depressions are real features in the landscape, and which allows them to ‘fill’ and then ‘overflow’ into downstream areas within the DEM. Examples with a synthetic and two real DEMs suggest that, at least in these cases, the assumption that depressions are real is justified. These results also suggest that determining the size distribution for depressions within a DEM could form the basis for identifying whether artifact depressions are a problem in individual DEMs.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3