Recent progress in landslide dating

Author:

Pánek Tomáš1

Affiliation:

1. University of Ostrava, Czech Republic

Abstract

Recent progress of dating techniques has greatly improved the age determination of various types of landslides. Since the turn of the 21st century, the number of dated landslides throughout the world has increased several fold and the introduction of modern dating methods (e.g. cosmic ray exposure dating) has enabled the dating of new landslide features and elements. Based on the analysis of >950 dated landslides (of which 734 have been dated since the year 2000), it is clear that the predominant traditional strategies have continued to rely on the radiocarbon method; however, there is a remarkable trend of using cosmic ray exposure techniques for dating both the accumulation (e.g. landslide boulders) and the depletion (e.g. landslide scarps) parts of landslides. Furthermore, an increasing number of slope failures is determined by a multi-dating approach, which enables the verification of particular dating methods. Although coherent regional landslide chronologies are still relatively scarce in comparison with extensive databases of fluvial, glacial and/or eolian landforms, they offer important insights into temporal landslide distribution, long-term landslide behavior and their relationships with paleoenvironmental changes. The most extensive data sets exist for the mountain areas of North America (Pacific Coast Ranges), South America (Andes), Europe (Alps, Scottish Highlands, Norway, Carpathians and Apennines), the Himalaya-Tibet orogeny and the Southern Alps of New Zealand. Dated landslides in the plate interiors are lacking, especially in South America, Africa and Australia. Despite the fact that some dating results are well correlated with major regional and continental-scale changes in the seismic activity, moisture abundance, glacier regimes and vegetation patterns, some of these results contradict previously established straightforward hypotheses. This indicates the rather complex chronological behavior of landslides, reflecting both intrinsic (e.g. gradual stress relaxation within a rock mass) and external factors, including high-magnitude earthquakes or heavy rainfalls.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3