Bed configuration and microscale processes in alluvial channels

Author:

Robert André1

Affiliation:

1. Department of Geography, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1 P3

Abstract

Numerous recent studies on fluvial processes, both in Canada and internationally, have focused on small-scale phenomena. Investigations on the characterization of surface roughness in coarse-grained channels and its links with flow resistance and sediment transport processes have been a dominant field of research. Closely related is a second major area of investigation on turbulent flow structures in boundary layers over both sand and gravel beds and their relations with the transport of bed material. Phenomena potentially related to 'bursting' have been shown to control bedload transport processes and the concentration of sediment in suspension. Detailed investigations have also been conducted on the links between flow turbulence, bed material movement, and bed morphology at channel junctions. Finally, selective entrainment and transport of individual coarse particles have been studied from field measurements and laboratory experi ments. Emphasis has been put on bed microtopography, surface structure and texture, and on a probabilistic approach to bedload transport.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Reference97 articles.

1. Andrews, E.D. 1983: Entrainment of gravel from naturally sorted riverbed material. Bulletin of the Geological Society of America 94, 1225-31.

2. Laboratory modelling of gravel braided stream morphology

3. Bed load transport in braided gravel-bed stream models

4. How do gravel-bed rivers braid?

5. Channel Morphology and Bed Load Pulses in Braided, Gravel-Bed Streams

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3