Capability of the variogram to quantify the spatial patterns of surface fluxes and soil moisture simulated by land surface models

Author:

Garrigues S1ORCID,Verhoef A2,Blyth E3,Wright A2,Balan-Sarojini B4,Robinson EL3ORCID,Dadson S5,Boone A6,Boussetta S4,Balsamo G4

Affiliation:

1. European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK | Bologna, Italy; INRAE, UMR EMMAH, Avignon Université, France

2. University of Reading, Reading, UK

3. UK Centre for Ecology & Hydrology, Wallingford, UK

4. European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK | Bologna, Italy

5. UK Centre for Ecology & Hydrology, Wallingford, UK; School of Geography and the Environment, University of Oxford, UK

6. CNRM – Université de Toulouse, Météo-France/CNRS, France

Abstract

Up to now, relatively little effort has been dedicated to the quantitative assessment of the differences in spatial patterns of model outputs. In this paper, we employed a variogram-based methodology to quantify the differences in the spatial patterns of root-zone soil moisture, net radiation, and latent and sensible heat fluxes simulated by three land surface models (SURFEX/ISBA, JULES and CHTESSEL) over three European geographic domains – namely, UK, France and Spain. The model output spatial patterns were quantified through two metrics derived from the variogram: i) the variogram sill, which quantifies the degree of spatial variability of the data; and ii) the variogram integral range, which represents the spatial length scale of the data. The higher seasonal variation of the spatial variability of sensible and latent heat fluxes over France and Spain, compared to the UK, is related to a more frequent occurrence of a soil-moisture-limited evapotranspiration regime during summer dry spells in the south of France and Spain. The small differences in spatial variability of net radiation between models indicate that the spatial patterns of net radiation are mostly driven by the climate forcing data set. However, the models exhibit larger differences in latent and sensible heat flux spatial variabilities, which are related to their differences in i) soil and vegetation ancillary datasets and ii) physical process representation. The highest discrepancies in spatial patterns between models are observed for soil moisture, which is mainly related to the type of soil hydraulic function implemented in the models. This work demonstrates the capability of the variogram to enhance our understanding of the spatiotemporal structure of the uncertainties in land surface model outputs. Therefore, we strongly encourage the implementation of the variogram metrics in model intercomparison exercises.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3