Ensemble learning based on remote sensing data for monitoring agricultural drought in major winter wheat-producing areas of China

Author:

Wang Lunche1ORCID,Zhang Yuefan1,Chen Xinxin1,Liu Yuting1,Wang Shaoqiang1,Wang Lizhe2

Affiliation:

1. Hubei Key Laboratory of Regional Ecology and Environmental Change, China University of Geosciences, Wuhan, China; Hubei Luojia Laboratory, Wuhan, China; Hunan Key Laboratory of Remote Sensing of Ecological Environment in Dongting Lake Area, School of Geography and Information Engineering, China University of Geosciences, Wuhan, China

2. School of Computer Science, China University of Geosciences, Wuhan, China; Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan, China

Abstract

Drought is mainly triggered by the lack of precipitation, which can lead to insufficient water supply for crops thus affecting their growth and development. Reliable drought monitoring is crucial to understanding drought risk and avoiding drought-induced crop yield losses. Based on the Stacking regression method and multiple remotely-sensed drought factors from 2001 to 2017, this study developed an ensemble learning framework for monitoring agricultural drought in major winter wheat-producing areas in China. Stacking used five machine learning algorithms, namely, extreme gradient boosting, support vector regression, extra trees, and multi-layer perceptron, as the base learners to model the relationship between remote sensing drought factors and 1-, 3-, and 6-month standardized precipitation evapotranspiration index (SPEI). In this study, county-level winter wheat yield records and drought maps provided by the Global SPEI database (SPEIbase) were adopted to assess the suitability of Stacking-predicted SPEI drought maps in agricultural drought monitoring. The results show that Stacking outperformed other machine learning algorithms in terms of estimation accuracy, with the highest R2 value of 0.77 and the lowest root mean square error (RMSE) of 0.47. The longer the time scale of model-predicted SPEI, the higher its correlation with detrended winter wheat yields. The comparison with the drought maps of SPEIbase shows that the Stacking-predicted drought maps successfully captured the spatial pattern and intensity change of drought events. The approach presented in the study has good applicability for agricultural drought monitoring and could be extended to the rest of the areas.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3