Automated mapping of relict patterned ground: An approach to evaluate morphologically subdued landforms using unmanned-aerial-vehicle and structure-from-motion technologies

Author:

Mather AE1,Fyfe RM1,Clason CC1,Stokes M1,Mills S1,Barrows TT2

Affiliation:

1. University of Plymouth, UK

2. University of Portsmouth, UK; University of Wollongong, Australia

Abstract

Relict landforms provide a wealth of information on the evolution of the modern landscape and climate change in the past. To improve understanding of the origin and development of these landforms we need better spatial measurements across a variety of scales. This can be challenging using conventional surveying techniques due to difficulties in landform recognition on the ground (e.g. weak visual/topographic expression) and spatially variable areas of interest. Here we explore the appropriateness of existing remote sensing datasets (aerial LiDAR and aerial photography) and newly acquired unmanned aerial vehicle (UAV) imagery of a test site on the upland of Dartmoor in SW England (Leeden Tor) for the recognition and automated mapping of relict patterned ground composed of stripes and polygons. We find that the recognition of these landforms is greatly enhanced by automated mapping using spectral two-dimensional imagery. Image resolution is important, with the recognition of elements (boulders) of <1 m maximised from the highest resolution imagery (UAV red-green-blue (RGB)) and recognition of landforms (10–100 m scale) maximised on coarser resolution aerial imagery. Topographic metrics of these low relief (0.5 m) landforms are best extracted from structure-from-motion (SfM) processed UAV true-colour imagery, and in this context the airborne LiDAR data proved less effective. Integrating automated mapping using spectral attributes and SfM-derived digital surface models from UAV RGB imagery provides a powerful tool for rapid reconnaissance of field sites to facilitate the extraction of meaningful topographic and spatial metrics that can inform on the origin of relict landform features. Care should be given to match the scale of features under consideration to the appropriate scale of datasets available.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3