How do soil properties affect alpine treelines? General principles in a global perspective and novel findings from Rolwaling Himal, Nepal

Author:

Müller Michael1,Schickhoff Udo2,Scholten Thomas1,Drollinger Simon3,Böhner Jürgen2,Chaudhary Ram P.4

Affiliation:

1. University of Tübingen, Germany

2. University of Hamburg, Germany

3. University of Vienna, Austria

4. Tribhuvan University, Nepal

Abstract

Little is known about how soil properties control tree growth at its upper limit. This paper reviews the state of knowledge and discusses the results specifically related to ecozones, to the scale-dependent importance of single factors, and to new findings from a near-natural treeline ecotone in Rolwaling Himal, Nepal. This paper identifies gaps in literature and shows where new research is needed, both conceptual and geographical. The review shows that at a global scale and throughout diverse ecozones, growing season soil temperature is considered a key factor for tree growth. Soil temperatures differ greatly at a local scale, and are mainly determined by local climatic, edaphic, and topographic conditions. Our result of 7.6 ± 0.6°C for growing season mean soil temperature at treeline in Rolwaling is 1.2 K higher compared to the postulated 6.4 ± 0.7°C for alpine treelines. We suggest a broadening of the ±0.7°C error term to cover the wide range at a local scale. The role of major soil nutrients and soil moisture for treeline shift has been underestimated by far. In Rolwaling, significantly decreasing nutrient availability (N, K, Mg) in soils and foliage with elevation might explain why treeline shift and global warming are decoupled. Further, soil moisture deficits early in the year impede seedling and sapling establishment, which could be an important mechanism that controls treeline position. These findings question previous results which argue that alpine treelines are unaffected by soil nutrient availability and soil moisture. We assume that specific combinations of soil properties as well as single soil properties limit tree growth even below climatic treelines.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3