Glacier retreat and climate change: Documenting the last 50 years of Alpine glacier history from area and geometry changes of Dosdè Piazzi glaciers (Lombardy Alps, Italy)

Author:

Diolaiuti Guglielmina Adele1,Maragno Davide2,D'Agata Carlo2,Smiraglia Claudio2,Bocchiola Daniele3

Affiliation:

1. Università di Milano, Italy,

2. Università di Milano, Italy

3. Politecnico di Milano, Italy

Abstract

The recent rapid mass loss of mountain glaciers in response to climate warming has been reported for high and low latitudes all over the Earth. The paper analyses and discusses the recent evolution of a representative glacierized group within the Italian Alps, the Piazzi—Dosdè, where small glaciers are experiencing considerable retreat and shrinking. We analysed aerial photos to calculate area and geometry changes in the time window 1954—2003, and glaciological and geomorphological surveys were also performed. The estimated area change during 1954—2003 was —3.97 km2 (—51% of the area coverage in 1954). Area reduction increased more recently: area change during 1991—2003 (12 years) was —1.74 km2, against —0.67 km2 during 1981—1991 (10 years), and —1.57 km 2 during 1954—1981 (27 years). Moreover, analysis of the most recent orthophotos acquired during the summer of 2003 under exceptional conditions (i.e. total absence of snow cover) allowed observation and mapping of changes affecting glacier shape and morphology, including growing rock outcrops, tongue separations, formation of proglacial lakes, increasing supraglacial debris and collapse structures. Such processes cause positive feedbacks that accelerate further glacier disintegration once they appear. From a geodynamical perspective, the Dosdè Piazzi is now experiencing transition from a glacial system to a paraglacial one; areas where in the past the shaping and driving factors were glaciers are now subject to the action of melting water, slope evolution and periglacial processes.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3