Developments in photogrammetry; the geomorphological potential

Author:

Lane S.N.1,Richards K.S.1,Chandler J.H.2

Affiliation:

1. Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK

2. Engineering Photogrammetry Unit, Department of Civil Engineering, City University, Northampton Square, London EC1 OHB, UK

Abstract

Current emphasis in geomorphology recognizes the need for the accurate representation of topographic form, reflected in the growth of digital terrain and elevation modelling. A key requirement of such strategies is the efficient acquisition of information in an appropriate form and at an appropriate resolution to the landform under consideration. The traditional use of photographs in geomorphology has been for interpretation, but developments in photogrammetry may allow the full advantages of the photograph as a means of acquiring and storing quantitative information to be used. The photograph can provide information on all areas visible on a photograph; the information is acquired retrodictively; the photograph preserves the spatial relationship of morphological units; the collection of photographs requires minimal landform contact; the photograph records extra explanatory information; and photographs can be obtained at an appropriate temporal resolution to the landform under investigation. However, optical and mechanical limitations imposed by traditional photogrammetric approaches have prevented its rigorous and widespread application to geomorphology. Developments within photogrammetry, notably the analytical approach, now open up wider geomorphological possibilities. The analytical approach overcomes these limitations through the use of an interactive mathematical model at the stage of photographic analysis. The obtained information is in a form directly suited to the construction of digital terrain or elevation models. This technique can be used both for landform monitoring and for the analysis of archival photographs to reconstruct historical landform change.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Reference68 articles.

1. Surface Velocity Determination on Large Polar Glaciers by Aerial Photogrammetry

2. Brunsden, D. and Jones, D.K.C. 1976: The evolution of landslide slopes in Dorset. Philosophical Transactions of he Royal Society London A (283), 605-31.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3