Research on glaciers and snow in New Zealand

Author:

Fitzharris Blair1,Lawson Wendy2,Owens Ian2

Affiliation:

1. Department of Geography, University of Otago, PO Box 56, Dunedin, New Zealand

2. Department of Geography, University of Canterbury, Private Bag 4800, Christchurch, New Zealand

Abstract

The glaciers and snowfields of the Southern Alps of New Zealand are the most significant in the Southern Hemisphere outside Antarctica and South America. The most substantial data on Southern Hemisphere glacier fluctuations come from New Zealand. The nature and behaviour of New Zealand's glaciers are also of wider scientific interest, because they are highly sensitive, high input-output systems that represent the temperate, maritime end of the glacier process-behaviour continuum. The areal extent and volume of glaciers and snow are outlined and an assessment is made of their scientific relevance and of their importance as resources and hazards. The main themes and progress of research on glaciers and snow, including snow avalanches, are reviewed. Glacier research has concentrated on only a few key glaciers and has focused on understanding glacier change. Main topics covered in this review relate to this focus and include fluctuations in termini, other mass balance signals and response to climate variability. Research on mass balance processes, glacier dynamics and glacier hydrology is also outlined. Seasonal snow has received less attention until recently. The main emphasis has been on quantification and past variability and its contribution to river flow, particularly in the most important hydroelectric power catchments of the South Island. Some field measurements have been made of the energy balance over snow. Research on snow avalanches has grown as the demands of winter recreation and alpine tourism have increased the hazard. Research first concentrated on production of avalanche atlases for the most hazardous areas and on quantifying the nature of the hazard. Subsequently, there has been a shift towards more process studies that are related to avalanche formation and runout distance. The main gaps in research on glaciers and snow are identified and key areas for future work proposed. There is an urgent need, in particular, for glacier mass-balance measurements. Extensive data on snow structure need to be synthesized. Satellite imagery should be used for monitoring of seasonal snow. Snow melt during northwest storms needs to be better defined. A more developed engineering approach is required for the study of snow avalanches. New Zealand offers exciting possibilities for the study of cryospheric processes, including response to future climate change.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3