Parametric optimization of deep cryogenic treatment for the wear response of implant material UNS R56700: Taguchi’s approach

Author:

Singh Paramjit1ORCID,Pungotra Harish2,Kalsi Nirmal S2

Affiliation:

1. Research Scholar, I. K. Gujral Punjab Technical University, Kapurthala, India

2. Department of Mechanical Engineering, Beant College of Engineering and Technology, Gurdaspur, India

Abstract

Using the Taguchi’s robust design of experiments methodology, this article presents the systematic identification and optimization of most influential parameters of deep cryogenic treatment process to minimize the specific wear rate of UNS R56700 (Ti6Al7Nb). In addition to the different soaking durations (0–96 h) at 77 K and different tempering temperatures (room temperature, 403–523 K), three commonly used variables of pin-on-disk test, namely, sliding speed (1.047–2.723 ms−1), contact pressure (0.641–1.282 MPa), and sliding time (600–2280 s) were chosen to conduct the tests. During dry sliding conditions, pin-on-disk tribo-tests were performed to slide Ti6Al7Nb on the surface of UNS 52986 (En31) material as per standardized ASTM G99 guidelines. Experimentally measured wear rate values were converted to signal–noise ratio to statistically analyze the influence of five control variables using pooled analysis of variance and F-test. Statistically found influential control variables are confirmed experimentally. The results show that sliding speed, contact pressure and soaking duration are the most significant factors influencing the wear rate. In contrast, the parameters, that is, tempering temperature and sliding time, exhibit a lower level of influence. Microstructural characterizations done using optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques suggested that deep cryogenic treatment favors the refinement of grain size of present phases with reduction in β-stabilization (β-phase) in Ti6Al7Nb. The possible reasons for the improvement in wear rate of Ti6Al7Nb underlying the morphological alterations have been explained.

Funder

I.K. Gujral Punjab Technical University

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On pre and post-processing of 3D printed ABS thermoplastic sacrificial pattern for strategic dog teeth;Progress in Additive Manufacturing;2022-07-20

2. Finite element simulation and statistical investigation of an orthodontic mini-implant’s stability in a novel screw design;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2021-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3