Multiphase flow experiment and simulation for cells-on-a-chip devices

Author:

Zhang Meihua1ORCID,Zheng Amy2,Zheng Zhongquan C1,Wang Michael Zhuo3

Affiliation:

1. Department of Aerospace Engineering, The University of Kansas, Lawrence, KS, USA

2. Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA

3. Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA

Abstract

A microfluidic-based microscale cell-culture device, or a cells-on-a-chip device, provides a well-controlled environment with physiologically realistic factors that emulate the organ-to-organ network of human body. In the microsystem, the in vivo situation can be resembled closely by controlling the chip geometry model, medium flow behavior, medium-to-cell density ratio, and other fluid dynamic parameters. This study is to develop multiphase models to carry out experiments and simulate flow in such devices. A standard soft lithography method is used to build the three-dimensional microfluidic chips. A definitely good qualitative and reasonably good quantitative agreement is obtained between the experimental and simulation results for particle velocity in the microfluidic chip, which validates the numerical simulation method. The cell deposition rate influenced by the flow shear is studied. The influence of gravity, inlet velocity, and cell injection number on cell concentrations are also investigated. Comparisons of different designs of cells-on-a-chip devices are addressed in the study. The physics of flow dynamics and related cell particle motion due to each of the above-mentioned variables are discussed. The results show that the multiphase flow model is promising to be used for simulating cell particle deposition and concentration for the purpose of design of cells-on-a-chip devices.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3