Acceleration-based joint stability parameters for total knee arthroplasty that correspond with patient-reported instability

Author:

Roberts Dustyn1,Khan Humera2,Kim Joo H1,Slover James2,Walker Peter S12

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Polytechnic Institute of New York University, Brooklyn, NY, USA

2. Department of Orthopedic Surgery, New York University Hospital for Joint Diseases, New York, NY, USA

Abstract

There is no universally accepted definition of human joint stability, particularly in nonperiodic general activities of daily living. Instability has proven to be a difficult parameter to define and quantify, since both spatial and temporal measures need to be considered to fully characterize joint stability. In this preliminary study, acceleration-based parameters were proposed to characterize the joint stability. Several time-statistical parameters of acceleration and jerk were defined as potential stability measures, since anomalous acceleration or jerk could be a symptom of poor control or stability. An inertial measurement unit attached at the level of the tibial tubercle of controls and patients following total knee arthroplasty was used to determine linear acceleration of the knee joint during several activities of daily living. The resulting accelerations and jerks were compared with patient-reported instability as determined through a standard questionnaire. Several parameters based on accelerations and jerks in the anterior/posterior direction during the step-up/step-down activity were significantly different between patients and controls and correlated with patient reports of instability in that activity. The range of the positive to negative peak acceleration and infinity norm of acceleration, in the anterior/posterior direction during the step-up/step-down activity, proved to be the best indicators of instability. As time derivatives of displacement, these acceleration-based parameters represent spatial and temporal information and are an important step forward in developing a definition and objective quantification of human joint stability that can complement the subjective patient report.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3