Retrieval analysis of neck fracture on uni-modular total hip arthroplasty stems: The contributions of material processing and stem design

Author:

Cubillos Patricia O1,dos Santos Vinícius O1ORCID,Fernandes Daniel A12,Moré Ari DO12,da Rosa Edison3,Fancello Eduardo A3,Roesler Carlos RM1

Affiliation:

1. Biomechanical Engineering Laboratory (LEBm) of University Hospital, Department of Mechanical Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil

2. Polydoro Ernani de São Thiago University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil

3. GRANTE, Department of Mechanical Engineering, Florianópolis, Federal University of Santa Catarina, Florianópolis, SC, Brazil

Abstract

Total hip arthroplasty stem fracture is an important contributor to morbidity rate and increases the cost of revision surgery. Failure is usually caused by issues related to overload, inadequate stem support, inappropriate stem design or dimensions and material processing. In this study, the role of the relationship between material characterization and biomechanical performance in the fracture of retrieved stems was explored. The stems were manufactured with forged stainless steel, had the same length, 12/14 trunnion, and 28-mm head. These stems were evaluated by macroscopic and microscopic examination to identify the causes of premature failure. Each stem was sectioned into four regions, and the cross-sections were used for the microhardness and grain size analysis. Finite element analysis (FEA) was carried out, considering the stem positioned at the femur, a musculoskeletal model, and biomechanical loading. All stems had fractured through a fatigue mechanism, mainly a unidirectional bending loading condition, with crack nucleation on the lateral side and propagation on the medial side. The numerical analysis revealed maximum mechanical stress on the lateral side of the stem neck, but this was below the yield stress calculated via the hardness. The use of a shorter head neck length could reduce the maximum mechanical stress at the neck. At a cross-section near the plane of the stem fracture, the hardness was lower than that normally reported by the ASM, and there were heterogonous and coarse grain sizes on the lateral side. The main cause of failure of the two stems analyzed was a combination of low hardness and coarse grain size, due to inappropriate materials processing, worsen by a high level of stress on the lateral side of the neck due to the large stem-head offset selected by the orthopedic surgeon.

Funder

Brazilian National Health Fund

Foundation to Support Research and Innovation of the State of Santa Catarina

ministério da saúde

conselho nacional de desenvolvimento científico e tecnológico

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Selection methodology of femoral stems under fatigue loading conditions;Computer Methods in Biomechanics and Biomedical Engineering;2022-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3