Experimental and analytical study on insertion force of composite-coated needle in soft tissue material

Author:

Patel Kavi1ORCID,Hutapea Parsaoran1ORCID

Affiliation:

1. Department of Mechanical Engineering, Temple University, Philadelphia, PA, USA

Abstract

Medical interventions require control over surgical needle insertion to minimize tissue damage and target inaccuracies during percutaneous procedures. The composite coating of the needle using Polydopamine (PDA), Polytetrafluoroethylene (PTFE), and Activated Carbon (C) has been used to reduce the damaging needle insertion force. This research aims to further understand the interfacial mechanics of coated needle insertion by studying the forces at the needle and tissue interface and developing an analytical insertion force model through a combined experimental and numerical method. The proposed analytical force model is divided into two components: (1) Friction force on the needle shaft, modeled using a modified Karnopp model that includes an elastic force component; (2) Cutting force on the needle tip, modeled using a constant cutting coefficient for a given tissue and insertion speed. In this work, the analytical model was established by incorporating experiments conducted at a reasonable 35 mm insertion depth in tissues. In a bovine kidney with a 35 mm insertion depth, the insertion force evaluated through experimentation and modeling differed by 6.5% for a bare needle and 17.1% for a coated needle. It is important to note that this difference in the analytical insertion force model is anticipated when dealing with real tissues with a highly complex structured tissue. Prediction of the insertion force could potentially be utilized in robotic needle systems for needle control to improve the success of percutaneous procedures.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3