Ensembled liver cancer detection and classification using CT images

Author:

Krishan Abhay1ORCID,Mittal Deepti1ORCID

Affiliation:

1. Department of Electrical and Instrumentation Engineering, Thapar Institute of Engineering and Technology, Patiala, India

Abstract

Computed tomography (CT) images are commonly used to diagnose liver disease. It is sometimes very difficult to comment on the type, category and level of the tumor, even for experienced radiologists, directly from the CT image, due to the varying intensities. In recent years, it has been important to design and develop computer-assisted imaging techniques to help doctors/physicians improve their diagnosis. The proposed work is to detect the presence of a tumor region in the liver and classify the different stages of the tumor from CT images. CT images of the liver have been classified between normal and tumor classes. In addition, CT images of the tumor have been classified between Hepato Cellular Carcinoma (HCC) and Metastases (MET). The performance of six different classifiers was evaluated on different parameters. The accuracy achieved for different classifiers varies between 98.39% and 100% for tumor identification and between 76.38% and 87.01% for tumor classification. To further, improve performance, a multi-level ensemble model is developed to detect a tumor (liver cancer) and to classify between HCC and MET using features extracted from CT images. The k-fold cross-validation (CV) is also used to justify the robustness of the classifiers. Compared to the individual classifier, the multi-level ensemble model achieved high accuracy in both the detection and classification of different tumors. This study demonstrates automated tumor characterization based on liver CT images and will assist the radiologist in detecting and classifying different types of tumors at a very early stage.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3