Methods for reducing peak pressure in laparoscopic grasping

Author:

Bos Jasper1,Doornebosch Ernst WLJ1,Engbers Josco G1,Nyhuis Ole1,Dodou Dimitra1

Affiliation:

1. Department of BioMechanical Engineering, Delft University of Technology, Delft, The Netherlands

Abstract

During tissue retraction with a laparoscopic grasper, tissue-damaging pressures can occur. Past research suggests that peak pressures can be considerably reduced by rounding the edges or covering the tip of the end effector with a silicon sleeve. To identify grasping methods that limit tissue damage, the effects of (a) Young’s modulus of the end effector, (b) curvature of the end effector, and (c) angle with which the tissue is pulled relative to the plane of the end effector, on the pressure generated on the tissue were investigated. Artificial skin was placed between two non-serrated jaws, a pressure-sensitive film was interposed between the skin and upper jaw, and the end effector was loaded with 13 N. End effectors with Young’s moduli of 0.09, 0.67, 1.49 MPa, and 69 GPa, and with non-rounded and 5 mm rounded edges were tested under pulling angles of 25°, 50°, and 75°. For non-rounded end effectors, the maximum pressure and the area across which pressure exceeded the safety threshold for tissue damage increased with Young’s modulus and pulling angle. For rounded end effectors, maximum pressure did not increase monotonically with Young’s modulus. Instead, the end effector with the second lowest Young’s modulus yielded significantly lower maximum pressure than the end effector with the lowest Young’s modulus. For rounded end effectors, pressures were below the safety threshold for all Young’s moduli. This indicates that to prevent tissue damage, soft graspers may not be needed; rounding the edges of metal graspers could suffice for preventing tissue damage.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3