Design of an integrated model for diagnosis and classification of pediatric acute leukemia using machine learning

Author:

Fathi Ehsan1,Rezaee Mustafa Jahangoshai1ORCID,Tavakkoli-Moghaddam Reza2,Alizadeh Azra3,Montazer Aynaz4

Affiliation:

1. Faculty of Industrial Engineering, Urmia University of Technology, Urmia, Iran

2. School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran

3. Department of Internal Medicine, Urmia University of Medical Sciences, Urmia, Iran

4. School of Medicine, Urmia University of Medical Sciences, Urmia, Iran

Abstract

Applying artificial intelligence techniques for diagnosing diseases in hospitals often provides advanced medical services to patients such as the diagnosis of leukemia. On the other hand, surgery and bone marrow sampling, especially in the diagnosis of childhood leukemia, are even more complex and difficult, resulting in increased human error and procedure time decreased patient satisfaction and increased costs. This study investigates the use of neuro-fuzzy and group method of data handling, for the diagnosis of acute leukemia in children based on the complete blood count test. Furthermore, a principal component analysis is applied to increase the accuracy of the diagnosis. The results show that distinguishing between patient and non-patient individuals can easily be done with adaptive neuro-fuzzy inference system, whereas for classifying between the types of diseases themselves, more pre-processing operations such as reduction of features may be needed. The proposed approach may help to distinguish between two types of leukemia including acute lymphoblastic leukemia and acute myeloid leukemia. Based on the sensitivity of the diagnosis, experts can use the proposed algorithm to help identify the disease earlier and lessen the cost.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3