Influence of surface coatings on the stress distribution by varying friction contact at implant-bone interface using finite element analysis

Author:

Dhatrak Pankaj1ORCID,Kurup Alekh1,Khasnis Neha1

Affiliation:

1. Dr. Vishwanath Karad MIT-World Peace University (Formerly MIT Pune), Pune, Maharashtra, India

Abstract

The present work aims to evaluate the effect of various surface coatings of titanium dental implants by varying the friction coefficient (µ) at the interface between the dental implant and jawbone using finite element analysis (FEA) methods and to provide a comparative analysis between the various surface coatings and implant designs. An accurate model of the dental implant prosthetics consisting of the hard (cortical) and the soft (cancellous) bone, with the various titanium dental implant designs was modelled using a 3D CAD software, and the FE mesh model was generated using HyperMesh 13.0. Three coatings having different coefficient of friction values were selected: Titanium Nitride (TiN) with a friction coefficient of 0.19, Titanium Oxide (TiO2) with a friction coefficient of 0.30 and Zirconium Nitride (ZrN) with a coefficient of friction of 0.49. The non-linear static stress analysis was conducted under three different loading conditions (vertical, lateral and oblique loading) using a CAE solver. The present study showed that surface coatings with high friction coefficients generated lower stresses in the cancellous bone while generating higher stresses in the cortical bone. However, for dental implants having microthreads in their neck region, surface coatings with a high coefficient of friction generated lower stresses at the interface between the cortical bone and the implant. The FEA results indicate that selecting suitable surface coatings would significantly decrease the stresses developed at the bone-implant interface, and future studies should conduct in vivo trials to validate the FEA results obtained.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating the Feasibility of Short Dental Implants as Alternatives to Long Dental Implants in Mandibular Bone: A Finite Element Study;Journal of Biomedical Materials Research Part B: Applied Biomaterials;2024-08-30

2. Integrating impulse excitation technique and machine learning to analyze elastic moduli in surface coatings;European Journal of Mechanics - A/Solids;2024-05

3. Evaluate the effect of bone density variation on stress distribution at the bone–implant interface using numerical analysis;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2024-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3