Affiliation:
1. Department of Mechanical Engineering, Imperial College London, London, UK
2. Fomerly of Stanmore Implants Worldwide Ltd, Elstree, UK
Abstract
This article describes a novel method for image-based, minimally invasive registration of the femur, for application to computer-assisted unicompartmental knee arthroplasty. The method is adapted from the well-known iterative closest point algorithm. By utilising an estimate of the hip centre on both the preoperative model and intraoperative patient anatomy, the proposed ‘bounded’ iterative closest point algorithm robustly produces accurate varus–valgus and anterior–posterior femoral alignment with minimal distal access requirements. Similar to the original iterative closest point implementation, the bounded iterative closest point algorithm converges monotonically to the closest minimum, and the presented case includes a common method for global minimum identification. The bounded iterative closest point method has shown to have exceptional resistance to noise during feature acquisition through simulations and in vitro plastic bone trials, where its performance is compared to a standard form of the iterative closest point algorithm.
Subject
Mechanical Engineering,General Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献