Prediction of failure in cancellous bone using extended finite element method

Author:

Salem Mohammad1ORCID,Westover Lindsey1,Adeeb Samer2,Duke Kajsa1

Affiliation:

1. Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada

2. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada

Abstract

The objective of our study is to develop extended finite element method models of cancellous bone specimens that are capable of accurately predicting the onset and propagation of cracks under mechanical loading. In order to do so, previously published three-point bending test results of a single trabecula were replicated using two different extended finite element method approaches, namely, elastic-plastic-fracture and elastic-fracture that considered different configurations of the elasto-plastic properties of bone from which the best approach to fit the experimental data was identified. The behavior of a single trabecula was then used in 2D extended finite element method models to quantify the strength of the trabecular tissue of the forearm along three perpendicular anatomical axes. The results revealed that the elastic-plastic-fracture model better represented the experimental data in the model of a single trabecula. Considering the 2D trabecular specimens, the elastic fracture model predicted higher strength than the elastic-plastic-fracture model and there was no difference in stiffness between the two models. In general, the specimens exhibited higher failure strain and more ductile behavior in compression than in tension. In addition, strength and stiffness were found to be higher in tension than compression on average. It can be concluded that with proper parameters, extended finite element method is capable of simulating the ductile behavior of cancellous bone. The models are able to quantify the tensile strength of trabecular tissue in the various anatomical directions reporting an increased strength in the longitudinal direction of forearm cancellous bone tissue. Extended finite element method of cancellous bone proves to be a valuable tool to predict the mechanical characteristics of cancellous bones as a function of the microstructure.

Funder

natural sciences and engineering research council of canada

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bone and bone remodeling finite element modeling;Bone Remodeling Process;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3